UNIVERSITY OF CALIFORNIA AGRICULTURAL EXTENSION SERVICE

Date:

To: August 24, 1967
DAVIS, CALIFORNIA
Walter R. Spivey, Farm Advisor, Del Norte County

From:

AUG 28 Rec'd
Title: WIlliam E. Mart in
Re: Extension Solis Specialist

Dear Welt:

1 am enclosing herewith the completed yield data from the Smith River large-scale fertilizer strips which you laid out last year and which i helped you harvest in June. Somewhat earlier I sent you the data on the fresh weight yields but have delayed getting the dry weight yields until ll you could have completed the plant species separations. We will a little later give you some chemistry on the clover and grass yields, but that is not yet completed.

The data from the Scatty Tryon strips are shown on the attached sheet. Here you wIll note on the fresh weight that phosphorus was the first limiting factor and that potassium was only effective after phosphorus had been applied.

You will also notice that the percent dry matter in the fresh forage was decreased by both phosphorus and by potassium where added to phosphorus. This reduction in percent dry matter, which we associate with increased succulence due to more clover, reduced the spread between the check and the fertilized treatments. This we are seeing in nearly every plot where fertilizer treatments increased the percent clover. Here it was clear that the percent clover in the forage was significantly increased by phosphorus and perhaps a little additional Increase from potassium. The nat effect, however, was that the biggest increase in our yields of dry material was due to the increase in clover with no really significant increase on the grass fraction.

The data from the Ulrich plot on the other side of the valley showed much the same interspecies competition. Here, yields ware increased by potassium but not phosphate. The potassium fertilized forage tended to have a lower percent dry matter or greater succulence. The total dry harvest was not significantly affected by fertilization, although the percent clover was. The result of this was that we increased the yield of clover but did not affect the yield of grass.

I think you may be interested, Walt, in the results from a field plot we ran on the Mendocino coast on the McGuire ranch. A copy of this is attached for your interest, since it shows that where phosphorus was added, which greatly increased the growth of clover, we definitely made the forage much more succulent. When expressed on a fresh weight basis, phosphorus here increased on a 53 percent yield = when we took it back on a dry basis, we only had a 27 percent increase.

I was sorry not to be able to rush right over and look at your fertilizer expertament at Uirich's next week. I do hove plans with my kids to go up to Oregon. We might drop beck through Smith River bust don't count on it toe seriously. I will be harvesting the greenhouse experiment on the Tryon soil one of these days when the plants get a little bit bigger.

WETV:g
EOMCERA
CO-OPERÅ

Sumnary of 1967 Vield Date

> Ulrich Fertllizer Strips
> Smith 免iver - Dol torte

Treatment	Total Vield Fresh wt. 1b/ac	$\begin{gathered} \text { \$ } \\ \text { ory } \\ \text { neter } \\ \hline \end{gathered}$	Vield - Dry we. bb/Ac			
			Total Harvest	Clover	Viald clovar	Crass
Wione	20.940	20.37	4753	21.8	919	3334
single Super	21.409	22.23	4739	11.7	556	4184
\& C 1	27.924	16.38	4732	39.9	1809	2918
$\mathrm{Cl}+$ Supar	26,235	19.13	5012	31.3	1567	3348
	4965	2.41	ns	18.9	800	ns
Coefficient of Verlatio	10.38	6.18	10.76	39\%	308	24.8\%

Sumnary of 1967 Yield Data

Scotty Tryon Strips
Smith Rivar - Del Norte

Treatment	Vield Fresh Vt. Lb/Ac		Yield Dry We ight Lb/Ac	$\begin{gathered} \text { \& } \\ \text { clover } \end{gathered}$	Yield of Dry Clover Grass	
None	6,027	22.63	1378	18.9	265	1114
K 61 single	6,707	23.31	1546	16.2	252	1294
Super	10,388	19.21	2021	27.5	553	1466
K Cl Super	14,284	17.84	2558	30.9	766	1792
150	1,385	2.96	505	18.6	332	677
c V	7.3	6.5	13.4	40\%	36.0	23.9

